CWCO₂ 激光辐照下硅的光吸收特性

李元恒

(中国科学院力学研究所)

提 要

本文基于半导体材料硅(Si)中电子、空穴的要米统计分在,计算了 Si 对 CO。激光的透射率随温度的 变化,并用实验对理论作了验证。说明在强 CO。激光辐照下, Si 对 CO。激光能量有着强烈的吸收,其机理 主要是自由载流子吸收。

一、引 言

自从 1978 年在意大利的卡塔尼亚(Catania)召开"离子注入半导体的激光效应"国际会议^{[11}以来,以硅(Si)为代表的半导体材料激光加工的研究十分活跃,至今论文已逾五百篇^[3~4]。实验指出,适当功率密度的连续 CO₃激光辐照可使离子注入 Si 中注入层的杂质原子 100% 电激活,使注入层非晶完全转变成单晶^[5,6]。扩碼 Si 经 CO₃激光辐照后表层载流子浓度可成倍提高^[7]。这些结果表明,对于高功率 CO₂激光来说,Si 并不是通常所认为的透射材料,而是对激光能量有良好的吸收。为弄清强 CO₂激光加热 Si 的动力学过程,我们基于 Si 对红外光的自由载流子吸收理论^[8],从电子、空穴的费米分布出发计算了 Si 对 CO₂激光的自由载流子吸收理论^[8],从电子、空穴的费米分布出发计算了 Si 对 CO₂激光的自由载流子吸收理论^[8],从电子、空穴的费米分布出发计算了 Si 对 CO₂激光的自由载流子吸收理论^[8],从电子、空穴的费米分布出发计算了 Si 对 CO₂激光能量的吸收会突然增强。透射率随温度变化的实验证实了这一点。本工作说明强光作用下 Si 对 CO₂激光能量的猛烈吸收是载流子的热激发所造成。

二、分 析

n型单晶Si中电子浓度 n 和空穴浓度 p 随温度 t 的变化服从费米统计分布⁵⁰

$$n = n_i \exp\left[\frac{E_F - E_i}{kt}\right],\tag{1}$$

C

5

$$p = n_i \exp\left[\frac{E_i - E_F}{kt}\right],\tag{2}$$

且 sin h $\left(\frac{E_F - E_i}{kt}\right) = \frac{N_D}{2n_i}$ 。 其中 $n_i = C^{\frac{1}{2}t^{\frac{3}{2}}} \exp\left(-\frac{E_g}{2kt}\right)$ 是本征载流子浓度, $C = 1.5 \times 10^{33}$, $E_g = 1.21 \sim 4.15 \times 10^{-4} t (\text{eV})$ 是禁带宽度, $k = 0.8625 \times 10^{-4} \text{eV/K}$ 是玻尔兹曼常数, N_D 是 掺杂浓度。本实验所用 Si 片的电阻率为 $0.5 \sim 2 \Omega \cdot \text{cm}$, 取 $N_D = 1 \times 10^{10} / \text{cm}^3$,

Si 对 CO₃ 激光的吸收系数 a 由电子吸收系数 a,和空穴吸收系数 a,组成,晶格吸收可

收稿日期: 1982 年 8 月 17 日, 收到修改稿日期: 1982 年 10 月 29 日

以忽略^[6]。设电子和空穴的光吸收截面分别为 K_n 和 K_p , 取 $K_n = 1 \times 10^{-16}$ cm⁻³, $K_p = 1 \times 10^{-16}$ cm^{-3 [10]}, 则有

$$\alpha = \alpha_n + \alpha_p = K_n \cdot n + K_p \cdot p_o \tag{3}$$

透射率 T 与吸收系数 α ,反射率 R 和 Si 片厚度 Z 的关系是

$$T = \frac{(1-R)^{2} e^{-\alpha Z}}{1-R^{2} e^{-2\alpha Z}} \,. \tag{4}$$

已知 R=0.29, Z=0.04 cm。以室温 t=300 K 为起点,每取一个温度,先从(1),(2)式算出 n 和 p。再将 n 和 p代入(3)式得到相应的 α ,最后从(4)式求出透射率 T。考虑到计算的 室温透射率与实验拟合,表1中仅列出 α 和 T 相对于室温值 α_0 、 T_0 的变化。

表1 Si片 n, p, α, T 随温度t变化的计算结果

Table 1 Calculated results of dependences of n, p, a, T on temperature t for Si plate

('K')	(em ⁻³)	p [cm ⁻³]	$lpha_0$ $lpha_0$ $lpha_0$ $lpha_0$ -1	$T_{(\times T_0)}$
200	1.00×10^{45}	$2.44 imes10^{\circ}$	1.0	1.0
400	$1.00 imes 10^{16}$	$6.92 imes 10^{11}$	1.0	1.0
500	$1.13 imes10^{16}$	$1.33 imes 10^{15}$	1.27	0.993
525	$1.46 imes10^{15}$	$4.55 imes 10^{15}$	1.91	0.959
550	$2.18 imes 10^{16}$	$1.18 imes 10^{16}$	3.36	0,897
575	$3.52 imes 10^{10}$	$2.52 imes10^{16}$	6.05	0.795
6:00	$5.81 imes 10^{16}$	$4.81 imes 10^{16}$	10.61	0,651
625	$9.48 imes10^{16}$	$8.48 imes 10^{16}$	17.96	0.478
6 50	$1.51 imes 10^{17}$	1.41×10^{17}	29.30	0.300
675	$2.36 imes 10^{17}$	$2.26 imes10^{17}$	46.22	0.151
700	$3.59 imes10^{17}$	$3.49 imes 10^{17}$	70.74	0.057
725	$5.32 imes 10^{17}$	$5.22 imes 10^{17}$	105.33	0.014
750	$7.70 imes 10^{17}$	$7.60 imes 10^{17}$	153.00	0.002

从计算结果可以看出, 在连续 CO₃ 激光辐照下, 当 Si 的温度仍在 500 K 以下时吸收系数 α 保持不变。但当 Si 的温度超过 500 K 后,由于空穴浓度 p 上升到可与电子 浓度 n 相比,载流子浓度的显著增高导致光吸收系数 α 的增加和透射率 T 的降低。这无疑会引起 Si 片温升速率的加快。下节的热电偶测温实验将证明这一预言是基本正确的。

三、实 验

实验用的光源是单模输出功率 40 W 的封离型连续 CO₂ 激光器, 光束 直径 $\phi \sim 8 \text{ mm}$, 用双面镀增透膜, 焦距 $f \sim 8.5 \text{ cm}$ 的锗(Ge)凹面透镜将光束直径扩至 12 mm 左右, 功率密 度~35 W/cm⁹。样片是厚 0.4 mm, 电阻率 0.5~2 Ω ·cm 的 n 型〈111〉Si 单 晶片, 尺寸 5×10 mm⁹。Si 片用石英玻璃作角顶支撑, 使 Si 与样品架之间的热接触尽量小。 实验在空 气中进行。透射率的相对变化用 LZ-3 型函数记录仪配合热敏电阻红外探测器测量。 将红 外探测器的两臂接入电压 22.5 V 的桥路中,调节电位器的阻值使桥路平衡。探测器接收光 照后阻值的变化换成电压信号由记录仪 V_1 笔描出。Si 片的温升采用直径 0.2 mm 的镍铬-

8

_ 1

J

_ `

1

1

1

1

3 卷

۲_

ι

١.

镍铝热电偶测量,每0.04 mm 对应温升1℃。信号送入 LZ-3 型记录仪的 Y_3 笔中。在激 光辐照 Si 片的同时启动记录仪,走纸速度 1 cm/sec, Y_1 , Y_3 两支笔将分别记下 Si 片透射率 随时间的变化和温升随时间的变化(图 1)。

从图1可看出, CO₃ 激光辐照下 Si 片温升是非线性的,并且存在拐点。在辐照的初期, 由于 Si 对 OO₃ 激光的一定吸收(α~1 cm⁻¹)使 Si 的温度几乎随时间直线地增高。随着温度 的增高, Si 片前后表面辐射, 对流热损失以及与样品架之间热传导的加剧使 Si 的温升速率 逐渐变慢。但到某一时刻(图1温升曲线的拐点 A 附近), 温升速率重新加快, 直到 Si 的温 度达到新的高度, 建立新的平衡。重要的现象是, Si 片透射率在辐照开始后的较长一段时间 内大体保持不变, 并在温升速率突然加快的拐点 A 处透射率开始急剧下降, 直至趋于 0。从 上节的分析计算已经可以认识到, 温升速率的突然加快和透射率的急剧下降均起因于载流 子的热激发, 因此发生在同一时刻。

图 1 CW CO₂ 激光辐照下 Si 片 透射率和温升随时间的变化 Fig. 1 Dependences of transmissivity and temperature of Si on the time under CW CO₂ laser irradiation

图 2 CO2 激光辐照下 Si 片透射率随温室 的变化以及与理论计算的比较

Fig. 2 Transmissivity versus temperature for Si plate under CO_2 laser irradiation. Comparison between theoretical and experimental results

为了便于使上节的计算结果(表 1)能与实验比较,我们将热电偶测温的信号送入记录 仪的横轴代替走纸,由 V_1 笔直接画出透射率随温度的变化(图 2)。鉴于实验仅给出透射率 的相对变化,我们取拟合因子使表 1 中的初始透射率 T_0 与实验的初始透射率拟合,即可算 出透射率随温度相对变化的曲线(图 2)。理论与实验比较相符,这说明对于自由载流子吸 收的分析和计算基本上是正确的。M. R. T. Siregar 等人^[11]曾做过类似的实验研究。他们 将 p 型〈100〉、n 型〈111〉的不同电阻率的 Si 片放在加热台和冷却台上,测量不同温度下 Si 对 CO₂ 激光的透射率。结果发现 Si 的透射率在 78~600 K 之间只随温度的升高而 缓慢 减 小,到 600 K 以上透射率随温度的升高减小得很快,直至趋于 0。本文的实验、计算与 M. K. T. Siregar 等人的结果是一致的。我们用厚 0.4 mm、电阻率 6~9 Ω·cm 的 p 型〈100〉单晶 Si 片进行实验时,得到透射率和温升曲线的形状与图 1 很相似。

四、讨 论

用热电偶测量物体的温度时,理想的作法是将电偶头埋入被测物体中,但这对脆而硬的

571

薄 Si 片有困难。本文用热电偶与 Si 相接触的方法测量 Si 的温度,操作固然简便,也具有高的空间分辨能力,但由于接触的任意性使得测量值不够准确,一般是测出的温度偏低。另外,这种方法只适用于温升不太快的情况,因为如果温升太快, Si 与热电偶之间一旦来不及建立热平衡,就容易导致测量的错误。

本文用(1)~(4)式计算透射率随温度的变化时除假设反射率 B 是常数 外,还 假定了 K_n、K_n也是常数。这后一假定看来是有问题的,但目前缺少 K_n、K_n随温度变化的数据。 从图 2 可以看到,实验测出的透射率急剧下降的起始温度比计算值高,如果考虑到热电偶测 出的温度比 Si 片真实温度低的话就更是如此。为使理论与实验更好地符合,似乎意味着 Si 中电子,空穴的光吸收截面随着温度的升高有减小的趋势,但具体形式还有待探讨。

五、结 语

本文从理论和实验两方面证实, 红外透射材料硅(Si)对强 CO₂ 激光具有良好的能量吸收。由于吸收主要来自载流子的热激发,因此这一结论也适用于其它半导体材料。这为连续 CO₂ 激光用以 Si 为代表的各种半导体材料加工、退火以及破坏指出了可能性。

作者感谢端木玉英同志对实验工作给予的帮助。

多考文献

- [1] E. Rimini; «Proceedings of Laser Effects in Ion-Implanted Semiconductors», (Italy, Catania, 1978).
- [2] C. W. White et al.: «Symposium on Laser and Electron Beam Processing of Materials, Cambridge, 1979», (New York Academic Pr., 1980).
- [3] S. D. Ferris et al.; «Laser-Solid Interactions and Laser Processing 1978», (Materials Research Society, Boston), American Institute of Physics, New York, 1979.
- [4] J. F. Gibbons et al.; «Laers and Electron Beam Solid Interactions and Materials Processing», (North Holland, New York, 1981).
- [5] M. Miyao et al.: Appl. Phys. Lett., 1979, 35, No. 3 (Aug), 227.
- [6] G. K. Celler et al.; J. Appl. Phys., 1979, 50, No. 11 (Nov), 7264.
- [7] 李元恒等;《半导体学报》,1982.3, No. 4, 340.
- [8] R. K. Willardson et al.; «Semiconductors and Semimetals». (New York, Academic Pr. 1967), v. 3: Optical Properties of HI-V Compounds.
- [9] 黄昆,韩汝奇著;《半导体物理基础》,《科学出版社,1979),37.
- [10] L. Justrzebski et al.: J. Electrochemical Soc., 1979, 126, No. 2 (Feb), 260.
- [11] M. R. T. Siregar et al.; Appl. Phys. Lett., 1980, 36, No. 10 (May), 787.

t

_ 1

2

;

1

Optical absorption of silicon under CW CO2 laser irradiation

LI YUANHENG (Institute of Mechanics, Academia Sinica, Beijing) (Received 17 August 1982, revised 29 October 1982)

Abstract

Basing on the Fermi statistical distribution of electron and hole in semiconductor silicon, the dependence of the transmittance of silicon under CO_2 laser irradiation on temperature has been calculated, furthermore theoretical results were proved by experimental data. It has been shown that silicon can strongly absorb energy of the beam under intense CO_2 laser irradiation, the mechanism of the absorption is dominately absorption of the free carrier.

上海市激光学会 1983 年年会在上海市科学会堂举行

由上海激光学会举办的1983年激光年会于5月9日至11日在上海市科学会堂召开,参加会议的有 高等驻校、科研单位、工工企业等有关单位的报告人以外,上海市激光学会的会员也参加了会议。

在这次会议上提出的 189 篇论文大致可分为七个专题,分别在5个会场内同时交流。其中激光光谱5 篇,激光物理 17 篇,激光器件 33 篇,激光应用 36 篇,应用光学与光信息处理 31 篇,非线性光学7 篇,功能 元件及材料 8 篇,激光医学 52 篇,

在激光物理与激光光谱领域中,主要报道的是强光与物质的相互作用,气体激光介质的光电汽持性,新型激光器的激光光谱和荧光光谱,激光参量的测量原理,喇曼光谱的研究等。

激光器件方面的论文有,染料激光器,气体激光器,准分子激光器,金属蒸汽激光器,固体激光器以及最 近发展起来的色心激光器、自由电子激光器等,介绍了大家较为关注的这些器件的信能,以及关键元、部件 的研制。通过交流将会使这些器件更臻完善、实用。

激光应用的领域已越来越开阔。在年会上主要报道的有激光跟踪测向,激光扫描测角,激光经纬仪,红 外测距仪,激光切割,金属及无机材料的激光热处理,激光测速,以及对用以传输激光的光导纤维的研究,激 光与光纤的耦合,激光薄膜的参数测量等。这表明激光应用已渗透到纺织、化工、医学科学研究、船舶、机械 制造等轻、重工业的各部门,并已逐步纳入直接为国民经济服务的轨道。

应用光学与光信息处理方面有简单实用的微微秒掠冲宽度测量装置,光刻录刻设备的研究,全急光带 的研制及质量评定,全息干涉测量技术以及最近正在开展的干涉图象的微处理机分析等。

年会上还选择优秀报告,推荐给今年9月在广州召开的'83国际激光会议进行评审。

(张珊珊)

١._